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We present a language for representing contezt-
sensitive temporal probabilistic knowledge. Con-
text constraints allow inference to be focused on
only the relevant portions of the probabilistic
knowledge.  We provide a declarative semanlics
for our language and an implemented algorithm
(BNG) that generates Bayesian networks to com-
pute the posterior probabilities of queries. We il-
lustrate the use of the BNG system by applying it
to the problem of modeling the effects of medica-
tions and other interventions on the condition of
a patient in cardiac arrest.

INTRODUCTION

For accurate medical diagnosis and prediction, it
1s often necessary to model a patient’s condition
over time. Because there is great uncertainty in
clinical medicine, a system for diagnostic or prog-
nostic evaluation must be able to represent and
reason with uncertainty. Bayesian networks are
currently the most powerful and popular method
for representing and reasoning with probabilistic
information. A Bayesian network is a directed
acyclic graph in which the nodes represent ran-
dom variables and the links represent direct in-
fluences. The influences are quantified with con-
ditional probabilities in the form of link matrices
assoclated with each node. A link matrix specifies
the probabilities of all possible values of a node
given all possible combinations of values of its par-
ents. Researchers have recently applied Bayesian
networks to the modeling of temporal processes
[1, 2]. This is typically done by representing time
discretely and creating an instance of each time-
varying random variable for each point in time.
Although Bayesian networks provide a rela-
tively efficient method for representing and rea-
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soning with probabilistic information, the process
of computing posterior probabilities (inference) in
Bayesian networks remains NP-hard [3]. This
complexity becomes particularly problematic in
large models such as those that arise in model-
ing temporal processes. We can greatly reduce
the size of the network models if we can identify
some deterministic information and use it as con-
text to index the probabilistic information. For
example, in using Bayesian networks to determine
the likely outcomes of a plan, actions are typically
represented as nodes in the network [4, ch7], [5].
This often results in networks with large numbers
of nodes and large link matrices. The reason is
that we need two types of knowledge for each do-
main variable: a specification of how it is influ-
enced by each action (causal rules), and a specifi-
cation of how 1t behaves over time in the absence
of actions that influence it (persistence rules). But
since when evaluating a plan, the performance of
one’s own actions is deterministic knowledge — we
know whether or not we plan to attempt an action
—, actions can be used as context information.

We propose representing a class of Bayesian net-
works with a knowledge base of probabilistic rules
augmented with context constraints. A context
constraint is a logical expression that determines
the applicability of a probabilistic relation based
on some deterministic knowledge. Given a query,
a set. of context information, and a set of evidence,
we generate a temporal Bayesian network to com-
pute the probability of the query given the evi-
dence within the given context. Both context in-
formation and independencies encoded in the net-
work toplology are used to avoid generation of
nodes irrelevant to the computation.

CARDIAC ARREST

We illustrate the capabilities of context-sensitive
temporal probability model construction by mod-
eling the effects of medications and other interven-
tions on the condition of a patient in cardiac ar-
rest. The goal of treatment is to maintain life and
prevent anoxic injury to the brain. Fewer than



10% of cardiopulmonary resuscitation attempts
result in survival without brain damage [6].

The observable variable is the electrocardio-
gram (ECG) or rhythm strip. While not includ-
ing all possible rhythms, we consider the range of
rhythms most commonly presented: normal sinus
rhythm, ventricular fibrillation, ventricular tachy-
cardia, atrial fibrillation, supraventricular tachy-
cardia, bradycardia, and asystole.

While patient survival is of primary importance,
cerebral damage must be taken into account and
can be viewed as part of the cost in a resuscitation
attempt. The length of time a patient has been
without cerebral blood flow determines the period
of anoxia . If the patient has ineffective circulation
for more than five minutes, there is a likelihood of
sustaining cerebral damage. This damage is per-
sistent and its severity increases as the period of
anoxia increases.

Medical personnel treat a patient experiencing
a cardiac arrest with a variety of interventions and
medications. We consider the two most common
medical interventions: cardiopulmonary resuscita-
tion (CPR) and defibrillation (DFIB). A number
of medications help control the heart rhythm and
rate, improve cardiac output and increase blood
pressure. Many effective drugs are currently avail-
able, of which we chose to model the three most
commonly used. Lidocaine is an anti-arrhythmic
drug that helps restore a regular rhythm; it is usu-
ally used for ventricular tachycardia, ventricular
fibrillation, or to prevent ventricular fibrillation.
Atropine increases the heart rate during brady-
cardia or asystole. Epinephrine overcomes heart
block and helps restore cardiac function. We have
simplified our model by assuming a standard bolus
size and administration rate.

THE BNG SYSTEM

The Bayesian Network Generation system (BNG)
takes as input a knowledge base (KB), a set of
evidence atoms (E), a set of context atoms (C),
and a query atom (Q) and creates a network to
compute the probability of Q given E in the con-
text C. BNG reasons with two disjoint sets of
predicates: probabilistic predicates (p-predicates)
and context predicates (c-predicates). Atoms
formed from p-predicates (p-atoms) represent ran-
dom variables. Atoms formed from c-predicates
(c-atoms) represent deterministic knowledge. We
apply completed logic program semantics to the
set of c-atoms, designated completed(C), and con-
sider only the logical consequences in the Her-
brand universe. This gives us the well-known
property of negation-as-failure, by which failure
to show the truth of an atom is taken to indicate
its falsity. Negation-as-failure allows us to avoid
having to explicitly specify the lack of occurrence
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of certain actions and events. With this seman-
tics, completed(C) entails the truth or falsity of
each c-atom in the Herbrand universe. Further,
we assume that completed(C)) holds with proba-
bility one, so that each c-atom in the Herbrand
universe has either probability one or zero.

A rule in a BNG knowledge base has the general
form:

Context: (', ...,Cpy

Ante: Ay, Ap

Conse: Ag

Matrix:  (conditional probabilities)

where the A; are p-atoms and the C; are c-atom
literals, both of which may contain variables that
are implicitly universally quantified. Such a rule
represents a set of universally quantified condi-
tional probability sentences of the form

VX P(Ao 1 Al,...,An, (.vjl,...,(,jm) = «

Such sentences can be given a well-defined seman-
tics in Halpern’s [7] probability logic L.

We interpret computation of @ given E in con-
text ' as computing P(Q|E, ). But notice that
since each c-atom has either probability one or
zero, we can condition the sentences in KB on
C by simply eliminating those rules for which one
of the C; has probability zero and by eliminating
the conditions from those for which all (; have
probability one. Call this the C-selected KB. Just
as the link matrices in a Bayesian network do not
completely specify a probability distribution over
the random variables represented by the nodes,
the probabilities in the rule matrices do not com-
pletely specify a probability distribution over the
random variables represented by ground instances
of the p-atoms. In a Bayesian network, the dis-
tribution is completed by assuming probabilistic
independence associated with the property of the
network topology called d-separation. In previous
work [8] we have shown that such an independence
assumption can be applied to a knowledge base as
well. Now if the rules in the (C-selected K'B con-
form to some syntactic constraints then it has been
proven that they represent a class of Bayesian net-
works formed by taking sets of ground instances
of the rules [8]. We can compute P(Q|E,C) by
using the rules in the C-selected KB to generate
a network to compute P(Q|E) and then evaluat-
ing the Bayesian network. We have used the for-
mal knowledge base semantics to prove that this
two-step process is a sound and complete inference
procedure for queries on the K B [9].

Given a ground atomic query @, a set of ground
evidence atoms E, and a set of ground context
atoms (', BNG generates a network to compute
P(Q|E, completed(C")) such that the probability
computed with the network is equal to that defined
by the knowledge base semantics. The key idea
behind the algorithm is that since the rules in the
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Figure 1: Traversal chart for identifying active
paths.

knowledge base are structurally similar to Horn-
clauses, we can use backward-chaining to search
through the rules for paths between the query and
related random variables. The generated network
is just the resulting search tree. The algorithm
has been implemented ! in CommonLisp with an
interface to the IDEAL [10] inference system.

The algorithm proceeds by first generating the
network and then pruning d-separated nodes. By
simply backward chaining on the query and on
the evidence atoms the generation phase generates
all relevant nodes and avoids generating barren
nodes, which are nodes below the query that have
no evidence nodes below them. Such nodes are ir-
relevant to the computation of P(Q|E) [11]. Dur-
ing network generation we keep track of whether
a node is a predecessor of an evidence node. Such
nodes are called epsilon nodes. This information
will be used by the pruning algorithm in determin-
ing d-separation.

The pruning phase involves traversing the gen-
erated network using a modified depth-first search
originating at the query. Only those nodes reach-
able via an active path from the query are visited
and marked as reachable. Upon termination of the
search, only reachable nodes are retained.

As we approach each node within the search,
we examine the direction of the incident edge into
that node, whether the node is marked as an ep-
silon node, and whether the node is an evidence
node. From this information we can determine
the allowed directions of outgoing edges from that
node. The relations between incoming edge (link
from a parent), outgoing edge (link to a child), and
the type of node are shown in figure 1. An incom-
ing edge is represented by a + and an outgoing
edge is represented by a —. For example, the first
entry says that if a node is an evidence node and a
path enters the node along an incoming edge then
it can exit the node only along another incoming
edge.

MODELING THE DOMAIN

We represent the cardiac-arrest domain with p-
predicates for rhythm, period of anoxia, cerebral
damage, and cerebral blood flow:

Rhythm(time, value)
value = {normal, v-fib, v-tach, a-fib, SVT,

!The code is available at
http://www.cs.uwm.edu/faculty /haddawy.
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Figure 2: Diagramatic representation of knowl-
edge base rules for the medical code domain.

brady, asystole}
POA (time, value)
value= {none, lmin, ..., 5min, sustained}
CD(time, value)
value= {none, mild, moderate, severe}
CBF(time, value), value = {present, absent}

We represent the various possible medications
and interventions as c-predicates:

Intervention(time, value)
value={CPR, DFIB}

Medication(time, value)
value={EPI, LIDO, ATRO}

The knowledge base for the medical code do-
main contains rules for determining the probabil-
ities of the four p-predicates at any point in time.
The rules are diagramatically shown in Figure 2.

We have a set of rules that describe the ef-
fects of medications and interventions on the
heart rthythm by specifying the probability of the
rhythm at a time ¢ given each possible combina-
tion of medication and intervention at time ¢ — 1
and the rhythm at time ¢t — 1. We also have a
rule specifying the probability of the rhythm at ¢
given only knowledge of the rhythm at ¢t — 1. This
type of rule is called a persistence rule. The med-
ication administered and the intervention applied
are specified as context constraints on the rules.
The BNG rule specifying the effect of epinephrine
on Rhythm is shown below:

Context: Intervention(t-1, CPR),
Medication(t-1, EPI)

Ante: Rhythm(t-1)
Conse: Rhythm(t)
Matrix:

;NSR VF VT AF SVT B A
.03 .26 .10 .05 .55 .00 .01 ;normal (NSR)
.12 .60 .10 .00 .08 .00 .10 ;v-fib (VF)



.01 .80 .14 .00 .00 .00 .05 ;v-tach (VT)
.01 .30 .05 .50 .05 .00 .09 ;a-fib (AF)
.01 .10 .09 .35 .30 .00 .05 ;SVT

.08 .15 .02 .05 .60 .05 .05 ;brady (B)
.10 .15 .05 .00 .05 .05 .60 ;asystole (A)

If actions were not represented as context con-
straints, the link matrix for Rhythm would con-
tain 588 entries. By representing actions as con-
text constraints, we obtain 12 rules each with a
link matrix of 49 entries. Although using context
constraints does not reduce the amount of proba-
bilistic information we must assess, it drastically
reduces the size of the link matrices in the gen-
erated networks, which is the main determining
factor in the inference complexity.

The rule for period of anoxia specifies the value
at time ¢t given the previous value and the previous
value for cerebral blood flow. The rule for cere-
bral damage specifies the value of cerebral dam-
age given the previous value and the current value
for period of anoxia. Finally, the rule for cerebral
‘blood flow specifies the value at a time as deter-
mined by the heart rhythm at that time.

One of the more difficult aspects of developing
a probabilistic model such as this one is securing
complete, valid knowledge. All domain knowledge
was elicited from an expert ER physician. We
started by eliciting the qualitative causal structure
of the domain. We then used Bahill’s [12] tech-
niques for eliciting the needed conditional proba-
bility values.

RESULTS

The procedure used when performing a simula-
tion involves three steps. First, the evidence is
set to specify the condition of the patient at the
present time (time 0). The conditions specified are
cardiac thythm, known period of anoxia and pre-
vious extent of cerebral damage. Second, the ac-
tions (medications and/or other interventions) are
specified for individual time segments.? Third, the
queries are set for particular variables at specific
times, usually examining the rhythm and cerebral
damage. These specifications are used by BNG to
construct a Bayesian network that can then be fed
to an inference system. The system used in these
simulations was IDEAL. The queries are answered
by providing the posterior probabilities given the
evidence and actions.

Our first example simulates a response to a mas-
sive myocardial infarction. The following evidence
is presented as the state at time 0: rhythm is ven-
tricular tachycardia, no period of anoxia, no cere-

2In practice a physician would decide on later ac-
tions after observing the effects of previous actions.
But in order to choose the optimal next action, one
must evaluate each choice in the context of the opti-
mal sequence of future actions.
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Figure 3: Temporal Bayesian network for querying
heart rhythm.

Figure 4: Temporal Bayesian network for querying
cerebral damage.

bral damage, and cerebral blood flow is present.
The actions are represented as context informa-
tion. Epinephrine is administered at times 1 and
2 and lidocaine is administered at time 3. CPR is
administered throughout the code except when the
patient is being defibrillated at time 2. Notice that
because of the negation-as-failure assumption, we
need not specify what medications and interven-
tions are not being performed at each time. We
query the cardiac rhythm at time 4. Given this
inference problem, BNG generates the network
shown in Figure 3. The computed posterior prob-
abilities are P(normal) = 0.44, P(v-fib) = 0.11,
P(v-tach) = 0.03, P(a-fib) = 0.01, P(SVT) = 0.04,
P(bradycardia) = 0.02, P(asystole) = 0.35.

Next we evaluated an alternative course of treat-
ment for the same patient. Rather than defibril-
lating at time 2, we just administered continuous
CPR from time 0 through time 3. BNG gener-
ated a network with the same topology as that
in Figure 3 and computed the following posterior
probabilities: P(normal) = 0.57, P(v-fib) = 0.10,
P(v-tach) = 0.04, P(a-fib) = 0.04, P(SVT) = 0.11,
P(bradycardia) = 0.01, P(asystole) = 0.13. Con-
tinuous administration of CPR is determined to
have a higher probability of resulting in normal
sinus rhythm than is the combination of CPR and
defibrillation.

The next example models a cardiac arrest due
to drowning. The initial rhythm is asystole, the
period of anoxia is known to be 5 minutes and
there is no prior cerebral damage. Treatment con-
sists of atropine administration at times 0 and 1,



and continued CPR from time 0 through 2, except
when the patient is being defibrillated at time 1.
The network generated in response to a query of
cerebral damage at time 4 is shown in Figure 4.
The computed posterior probabilities of cerebral
damage are P(None) = 0.88, P(Mild) = 0.12.

Notice that the network generated for the first
problem is drastically smaller than that generated
for the second problem. BNG generates only that
portion of the network which 1s relevant to com-
puting the given probabilistic query. If actions
were not represented as context constraints and
the algorithm did not restrict itself to generating
only relevant nodes, the network in the first exam-
ple would contain 28 nodes.

DISCUSSION

We have presented a theoretically well-founded
method for constructing temporal Bayesian net-
works from context-constrained rules. The pres-
ence of a formal semantics for the representation
language is necessary in order to prove the correct-
ness of the network generation algorithm. Such
proofs are important for the high-stakes decision
making problems encounted in medicine. Our
technique is capable of selecting that portion of
a probability model that is relevant to a partic-
ular inference problem by using context informa-
tion and by pruning the generated network. The
naturalness of the encoding of the cardiac arrest
domain shows that the representation 1s relatively
easy to use. The networks generated to solve the
example problems illustrate the potential compu-
tational savings of the technique. Computational
efficiency becomes a major issue as researchers at-
tempt to model larger and more complex domains.

Our general approach to representing and con-
structing Bayesian networks is similar to that of
Breese [13]. He provides a method for constructing
non-temporal Bayesian networks from knowledge
bases of schematic context-constrained rules. He
does not provide a precise semantics for the knowl-
edge base. His construction algorithm chains both
forwards and backwards, and as a result is some-
what more complex than ours. He does not include
a pruning phase in his algorithm.

Nicholson & Brady [2] discuss a method of
dynamically constructing temporal Bayesian net-
works. They are able to control the size and com-
plexity of the models by prunning states from
nodes, arcs between nodes, or complete nodes.
The resulting network may be a precise or approxi-
mate representation. They do not provide a formal
semantics for their knowledge base representation
language.
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